Enumerating singular curves on surfaces

نویسنده

  • Steven Kleiman
چکیده

We enumerate the singular algebraic curves in a complete linear system on a smooth projective surface. The system must be suitably ample in a rather precise sense. The curves may have up to eight nodes, or a triple point of a given type and up to three nodes. The curves must also pass through appropriately many general points. The number of curves is given by a universal polynomial in four basic Chern numbers. To justify the enumeration, we make a rudimentary classification of the types of singularities using Enriques diagrams, obtaining results like Arnold’s. We show that the curves in question do, in fact, appear with multiplicity 1 using the versal deformation space, Shustin’s codimension formula, and Gotzmann’s regularity theorem. Finally, we relate our work to Vainsencher’s work with up to seven nodes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Finite Type Invariant Giving Complete Classification of Curves on Surfaces

In this paper, we construct a complete invariant for stably homeomorphic classes of curves on compact oriented surfaces without boundaries and show that this is a finite type invariant for curves. In knot theory, it is still unknown whether finite type invariants completely classify knots (the Vassiliev conjecture). We consider the analogy to this conjecture for generic immersed curves: do fini...

متن کامل

CORRECTIONS to be made to the article by S. Kleiman and R. Piene ENUMERATING SINGULAR CURVES ON SURFACES appearing in “Algebraic geometry — Hirzebruch 70,”

p. 217b. — In the displayed formula for cod(D), replace 'm D ' by 'm V '. p. 219. — In Table 2-1, the value of r for X 1,2 should not be 1, but 4. p. 221b. — The proof of Proposition (3.2) should have used Gotzmann's regularity theorem in much the same way that it is used in the proof of Proposition (3.5). So replace the second paragraph in the first proof by the following two. There exists a m...

متن کامل

Geometry on Nodal

Given a family X/B of nodal curves we construct canonically and compatibly with base-change, via an explicit blow-up of the Cartesian product X r /B, a family W r (X/B) parametrizing length-r subschemes of fibres of X/B (plus some additional data). Though W r (X/B) is singular, the important sheaves on it are locally free, which allows us to study intersection theory on it and deduce enumerativ...

متن کامل

Stable Pairs and Bps Invariants

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 1. χ-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 2. BPS rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 2.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 2.2. Remarks . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

A Tropical Approach to Enumerative Geometry

A detailed algebraic-geometric background is presented for the tropical approach to enumeration of singular curves on toric surfaces, which consists of reducing the enumeration of algebraic curves to that of non-Archimedean amoebas, the images of algebraic curves by a real-valued non-Archimedean valuation. This idea was proposed by Kontsevich and recently realized by Mikhalkin, who enumerated t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999